Copyright 2013 Louisiana Delta STEM Camp. Powered by Blogger.

Day 4: Robotics Navigation with Infared LEDs

Robotics Class:  Using Infrared Headlights to "See" the Road

Today's hottest products seem to have one thing in common: wireless communication. Personal organizers beam data into desktop computers, and wireless remotes let us channel surf. Many remote controls and PDA’s use signals in the infrared frequency range to communicate, below the visible light spectrum. With a few inexpensive and widely available parts, the BASIC Stamp can also receive and transmit infrared light signals.


Infrared: Infra means below, so Infra-red is light (or electromagnetic radiation) that has lower frequency, or longer wavelength than red light. Students were instructed to use infrared light to illuminate the robot’s path and determine when the light reflects off an object. 


The infrared object detection system we’ll build on the Boe-Bot is like a car’s headlights in several respects. When the light from a car’s headlights reflects off obstacles, your eyes detect the obstacles and your brain processes them and makes your body guide the car accordingly. The Boe-Bot uses infrared LEDs for headlights. They emit infrared, and in some cases, the infrared reflects off objects and bounces back in the direction of the Boe-Bot. The eyes of the Boe-Bot are the infrared detectors. The infrared detectors send signals indicating whether or not they detect infrared reflected off an object. The brain of the Boe-Bot, the BASIC Stamp, makes decisions and operates the servo motors based on this sensor input.


The IR detectors have built-in optical filters that allow very little light except the 980 nm infrared that we want to detect with its internal photodiode sensor. The infrared detector also has an electronic filter that only allows signals around 38.5 kHz to pass through. In other words, the detector is only looking for infrared that’s flashing on and off 38,500 times per second. This prevents IR interference from common sources such as sunlight and indoor lighting. Sunlight is DC interference (0 Hz), and indoor lighting tends to flash on and off at either 100 or 120 Hz, depending on the main power source in the region. Since 120 Hz is outside the electronic filter’s 38.5 kHz band pass frequency, it is completely ignored by the IR detectors.


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment